单相接地保护。采用零序电流互感器获取电动机的电缆零序电流构成单相接地保护。启动时间过长保护。该保护主要用于保护电动机在启动时的堵转,电动机在规定的时间未完成起动时保护动作,其时限大于电机实际正常起动的最长时限。定制熔断器座低电压保护。当电机任一相电压低到整定值时,可动作于跳闸。断相(不平衡)保护。用于防止电动机电流严重不对称,产生较大的负序电流,从而造成转子过热,该保护可设两段定时限保护。为电动机供电的FC回路保护整定计算,以1000kW泵类电动机为例,制造厂给出电动机额定电流为120.3A起动电流为750A,根据工艺系统技术特点其起动时间为6s,每小时起动2次。电流速断保护。当回路发生短路故障时,由于短路电流较大,由电流速断保护动作。FC回路的电流速断保护由熔断器提供,其动作特性即为回路所选择的高压限流熔断器的时间一电流特性曲线。郑州熔断器座F-C回路中的真空接触器具有一定的短路电流分断能力,为降低熔断器的更换率,节省运行成本,FC回路中的真空接触器宜承担其分断能力范围内的速断保护功能,这可以通过综合保护装置来实现。
经试算,如果截流值达10A时,振荡电压幅值将达到7kV,约为两倍以下相对地电压。电弧重燃过电压。高频电弧重燃过电压发生的几率较高,过电压幅值也很高。定制熔断器座有相关试验表明,针对6kV系统,捕捉并记录到的过电压高达18.2kV(有效值),如果回路等值电感、电容匹配,理论上讲,更高的过电压也可能发生,只不过彼时电动机的绝缘已损坏,难以捕捉而已。分析高频重燃过电压。苏熔电器可以分析出,负载侧过电压峰值由两部分组成,第一项与负荷侧等值电感中的电流有关,代表了负载侧的磁场能量,第二项相当于第一次高频重燃电弧过零熄灭后负载侧等值电容上的电压,代表了负载侧的电场能量。定制熔断器座第一次高频重燃电弧过零熄灭后,接触器触头之间的恢复电压将提高,在触头间隙还没有达到安全开距的前提下,更容易发生第二次第三次重燃,即极间去游离过程还没有建立足够的介电强度,则更容易发生第二次第三次重燃。所以一定的灭弧时间即触头分离和下一次电流过零这一特定的时间间隔是必要的。
根据高压限流熔断器的焦耳积分特性,F-C 回路故障时故障电流越小,熔断器最小弧前焦耳积分值反而越大,当故障电流小于熔断器与接触器保护交接点电流时,由于综合保护装置的曲线所对应的开断时间低于熔断器的熔断时间,所以对应此电流的整个F-C回路的热效应值小于熔断器的焦耳积分值,因此故障时流过回路的最大热效应值应在保护交接点电流附近及所对应的时间。定制熔断器座实际工程中,F-C 回路的最大短路电流热效应即是熔断器与真空接触器的保护交接点处的焦耳积分值。由于选择熔断器时要躲过电动机的起动电流或变压器的励磁涌流的影响,对于变压器还应考虑低压侧电动机成组自起动的影响,因此,保护交接点所对应的时间一般在 2~30s之间。结合电缆的热稳定性能和保护交接点所对应的时间,可以确定选择电缆截面方法。根据电缆在过电流时的特性和耐受能力,当该交接点对应的动作时间小于5s时,电缆处于近似绝热状态,按该点对应的熔断器的最大动作热效应值,郑州熔断器座再根据绝热状态下的电缆最小热稳定截面确定电缆截面,此时电缆的耐受温度为短路时允许温度(以交联聚乙烯绝缘电缆为例,为250℃)。
3~10kV电网的中性点接地方式包括传统的不接地或经消弧线圈接地,以及电阻接地等多种接地方式。要确定电网的接地方式,必须综合考虑供电安全可靠性和连续性、配电网和线路结构、过电压保护和绝缘配合、继电保护构成和跳闸方式、设备安全和人身安等诸多因素。定制熔断器座下面简要介绍几种常用的接地方式及其对过电压的影响。3~10kV电网的中性点接地方式可以简单的归纳为单相故障时不(延时)跳闸和(立即)跳闸两种类型。单相接地不跳闸的中性点接地方式包括不接地、经消弧线圈接地和高电阻接地。过去国内3~10kV电网大多采用这些接地方式,但随着我国城乡电网电缆线路逐渐代替架空线和火力发电厂机组容量增大引起的电缆长度大幅增加,我国的3~10kV电网的中性点采用不接地或消弧线圈接地方式的做法已经不能满足电力工业建设发展和城市电网扩充改造的需要。实践证明,单相接地故障不立即跳闸的接地方式,郑州熔断器座有利于提高供电连续性特别适合于故障几率高、绝缘可自行恢复的以架空线路为主的配电网,如农村和中小城市供电网。
除熔断器的保护曲线外,综合保护装置内部可以对速断保护设置速断电流高值、低值和大电流闭锁功能,以实现对一定区间范围内短路电流的动作在电动机起动过程中,电动机按照速断保护高值动作,以躲过电动机的起动电流,此时速断保护低值被闭锁以防止误动作;定制熔断器座在电动机起动完成后按照速断保护低值动作,以提高保护灵敏度。当电流速断保护定值在真空接触器的开断能力范围内时,如能充分发挥接触器的开断能力(潜力),利用真空接触器对需要电流速断保护开断的部分故障电流进行开断,不仅可以减少高压熔断器的消耗,也可提高工艺系统运行的连续性,使F-C回路可以更经济的运行。为此,目前综合保护装置设置有大电流闭锁功能,利用综保装置对回路电流精确的测量能力,当回路故障电流大于综保装置过流闭锁电流值时,闭锁跳闸出口,由高压熔断器提供保护。郑州熔断器座利用综保装置的大电流闭锁功能,真空接触器可以承担一部分F-C回路的电流速断保护功能,速断保护动作时间一般设置为0s,即当回路故障电流大于速断保护整定电流且小于过流闭锁电流值时,可以由真空接触器瞬时动作并开断。
阻容过电压吸收器的选择,阻容过电压吸收器由电阻与电容器等元件串联组成,是通过改变开断回路的阻抗参数来吸收过电压的能量,从理论上来说,郑州熔断器座这是最理想的过电压保护措施。阻容吸收器可联接在FC回路断口之外的负载侧,阻容过电,研究人员曾进行过阻容过电压吸收器的配合试验,吸收器的参数为R=2502,Cb=0.33xF。开断空载电动机共进行24相次,截流值由不加吸收器前的21A降到10.5A,过电压倍数不超过2.33倍相电压,开断起动状态电动机也进行了24相次,测试表明,吸收器投入后高频振荡持续时间缩短,最大过电压为4倍相电压,但出现的几率由不加吸收器前的76.6%降到3.23%。可见阻容过电压吸收器对开断感应电动机的过电压具有较好的限制保护作用。定制熔断器座针对中性点不接地系统,实践表明,用于F-C回路的阻容过电压吸收器可以采用与“三叉戟”式避雷器相同的接线方式,可以取相地相间电容约为0.1~0.51F,相地相间电阻值约为100~5002。但是阻容吸收器的投入,也使6kV厂用电系统相对地电容值增加。以往由于国内发电机组的高压厂用电系统在接地电容电流满足要求的条件。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号