但对于以电缆供电为主的中压配电网,如大城市城区配电网、大中工矿企业配电网、中小型发电机电压直配电网、大容量火力发电厂的高压厂用电系统等,传统的接地方式还有一些不足之处,主要有以下几点:1)内过电压倍数较高,可达3.5~4倍过电压。间歇性电弧过电压及谐振过电压绝缘已经超过了避雷器允许承载能力,要求避开这两种过电压的发生和发展,从而需提高电网的整体绝缘水平。专业直流熔断器对于具有大量高压电动机的工矿企业和火力发电厂,配合较难实现。2)单相接地故障下,在升高的稳态电压下运行时间在2h以上,不仅会导致绝缘早期老化,或在薄弱环节发生闪络,引起多点故障,酿成断路器异相开断,恶化开断条件。3)电缆为非自恢复绝缘,发生单相接地必是永久性故障,不允许继续行,必须迅速切断电源,避免扩大事故。所以主要由电缆线路组成的3~10kV电网,在电容电流超过10A(发电厂厂用电系统为7A)时,太原直流熔断器宜采用中性点经电阻接地,单相接地故障立即跳闸的接地方式。由于立即跳闸而影响的供电连续性,则可从提高线路或设备的冗余度来解决,目前城网和大容量发电机组的高压厂用电系统已经按此设置。
关于熔断器的允许操作过电压的国家标准,是最大允许值。实际产品往往小于上述标准。太原直流熔断器真空接触器灭弧特性及操作过电压分析,真空接触器的结构特点和灭弧特性。真空接触器与真空断路器非常相似,两者就其结构而言基本相同,合闸与分闸时间也大致相同真空接触器与真空断路器比较,灭弧室方面存在一些小的差别,其是断路器灭弧室内设屏蔽罩,接触器则可以取消屏蔽罩;其二是断路器触头为圆柱体,端面上径向开有斜槽,灭弧过程形成旋转电弧,接触器的触头虽然也是圆柱体,但端面上一般没有径向斜槽;其三是触头开距不同,断路器触头开距稍大真空断路器与真空接触器分合闸时间虽然大致相同,但它们的触头间开距不同,接触器略小,所以接触器的分合闸速度实际上低于断路器。专业直流熔断器但就分闸的绝对速度来分析,实际上速率并不低。因此真空接触器虽然在灭弧室的结构上与断路器比较有微小差异,但它们的灭弧原理是相同的,这一点对分析操作过电压的特性十分重要。F-C回路的过电压分析,试验在一系列6kV中、小容量电动机群展开,证明切断电动机起动电流的过程中,发生重燃的几率较高,而且触头打开与电流自然过零的时间间隔小于1ms。
电弧的基本特性。专业直流熔断器高压熔断器因供电回路故障发生熔断时,熔断器的电弧范围内一般由阴极压降区、阳极压降区和弧柱区等三部分组成。阴极压降区长度大约只有10mm,在这个区域的一端,电流是在金属蒸汽中流过;另一端,电流是在固体或液体金属的阴极上流过。阴极压降区的电压降大约为10V。阳极压降区长度大约也只有10-3mm,在这个区域的一端,电流是在金属蒸汽中流过;另一端,电流是在固体或液体金属的阳极上流过。跨在阳极压降区的电压,可以是由零至熔体材料的原子电离电位之间的任何值,般认为取熔体材料的电离电位较合理。弧柱区占据阴极压降区和阳极压降区之间的全部空间。太原直流熔断器弧柱区温度很高,一般在绝对温度5000K以上。弧柱区可以认为是具有一定导电率的导体,其内部电场强度较低,这一段的电压与电弧燃烧的炽热程度、弧柱截面的大小、弧柱的长度等各种因素有关。其特点是电流大时,压降较小;电流小时,压降反而较大。维持电弧高温燃烧是由回路电感提倛主要能源,因为切断短路电流时,回路电感之中是储存有磁场能量的,该能量系维持电弧持续燃烧的主要能源。
由于合闸命令处于保持状态,接触器的跳闸回路动作后,合闸命令会再次合闸,致使接触器多次合跳,结果造成上一级开关设备保护跳闸,扩大事故范围,造成发电厂停机等严重后果。因此在接触器的控制回路中需配置完善的“防跳”回路。专业直流熔断器测量、信号回路。火力发电厂中对于F-C回路的信号和测量回路要求,回路的设计应符合D/T5153《火力发电厂厂用电设计技术规程》和GB/T50063《电力装置的电测量仪表装置设计规范》有关的要求。F-C回路的测量仪表和变送器根据上述规范配置。FC回路的电流互感器配置应满足保护和测量要求。目前,大多数F-C的控制回路采用直流控制电源。随着综合保护装置的逐步发展,其对F-C回路的保护和补充功能越来越完善,多数F-C的供电回路均配有综合保护装置。太原直流熔断器本书以电动机负荷为例,给出一种F-C回路典型控制图(图5-3典型FC回路控制接线图)。F-C回路典型控制图控制电源采用直流110V,具有“防跳”功能及控制电源和跳合闸回路的监视功能等,满足真空接触器的控制,信号和测量回路要求。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号