单相接地短路保护。变压器回路的单相接地短路保护系针对变压器低压侧单相接地短路的保护,该保护应装设下列保护之一:装在变压器低压侧中性线上的零序过电流保护;利用高压侧的过电流保护兼做低压侧单相接地短路保护。专业限流熔断器瓦斯保护。用来反映油浸式变压器的内部故障和漏油造成的油面降低,同时也能反映绕组的开焊故障。即使是匝数很少的短路故障,瓦斯保护同样能可靠保护。温度保护。对于干式变压器,可设置温度保护,高温告警,超温跳闸。为变压器供电的F-C回路保护整定计算,以1600kVA低压厂用变压器为例,变压器额定电压比为6/0.4kV,阻抗电压U4=6%,额定电流为154A,变压器低压侧电动机成组自起动电流为469A,考虑励磁涌流影响后,根据本文所述变压器回路熔断器的选择方法。速断保护。当回路发生短路故障时,由于短路电流较大,电流速断保护动作。电流速断保护由熔断器提供,重庆限流熔断器其动作特性即为回路所选择的高压限流熔断器的时间一电流特性曲线。与电动机保护类似,变压器的电流速断保护也可以利用综合保护装置的大电流闭锁功能。
阻容过电压吸收器的选择,阻容过电压吸收器由电阻与电容器等元件串联组成,是通过改变开断回路的阻抗参数来吸收过电压的能量,从理论上来说,重庆限流熔断器这是最理想的过电压保护措施。阻容吸收器可联接在FC回路断口之外的负载侧,阻容过电,研究人员曾进行过阻容过电压吸收器的配合试验,吸收器的参数为R=2502,Cb=0.33xF。开断空载电动机共进行24相次,截流值由不加吸收器前的21A降到10.5A,过电压倍数不超过2.33倍相电压,开断起动状态电动机也进行了24相次,测试表明,吸收器投入后高频振荡持续时间缩短,最大过电压为4倍相电压,但出现的几率由不加吸收器前的76.6%降到3.23%。可见阻容过电压吸收器对开断感应电动机的过电压具有较好的限制保护作用。专业限流熔断器针对中性点不接地系统,实践表明,用于F-C回路的阻容过电压吸收器可以采用与“三叉戟”式避雷器相同的接线方式,可以取相地相间电容约为0.1~0.51F,相地相间电阻值约为100~5002。但是阻容吸收器的投入,也使6kV厂用电系统相对地电容值增加。以往由于国内发电机组的高压厂用电系统在接地电容电流满足要求的条件。
根据高压限流熔断器的焦耳积分特性,F-C 回路故障时故障电流越小,熔断器最小弧前焦耳积分值反而越大,当故障电流小于熔断器与接触器保护交接点电流时,由于综合保护装置的曲线所对应的开断时间低于熔断器的熔断时间,所以对应此电流的整个F-C回路的热效应值小于熔断器的焦耳积分值,因此故障时流过回路的最大热效应值应在保护交接点电流附近及所对应的时间。专业限流熔断器实际工程中,F-C 回路的最大短路电流热效应即是熔断器与真空接触器的保护交接点处的焦耳积分值。由于选择熔断器时要躲过电动机的起动电流或变压器的励磁涌流的影响,对于变压器还应考虑低压侧电动机成组自起动的影响,因此,保护交接点所对应的时间一般在 2~30s之间。结合电缆的热稳定性能和保护交接点所对应的时间,可以确定选择电缆截面方法。根据电缆在过电流时的特性和耐受能力,当该交接点对应的动作时间小于5s时,电缆处于近似绝热状态,按该点对应的熔断器的最大动作热效应值,重庆限流熔断器再根据绝热状态下的电缆最小热稳定截面确定电缆截面,此时电缆的耐受温度为短路时允许温度(以交联聚乙烯绝缘电缆为例,为250℃)。
限制过电压的作用将由此电压开始。过电压限制器两端子间,施加工频参考电压时,流过限制器的泄漏电流称为工频参考电流I。显然,氧化锌过电压限制器工频参考电压的选择应大于额定电压值。荷电率的选择。氧化锌过电压限制器的持续运行电压与工频参考电压的比值称为荷电率。专业限流熔断器越接近工频参考电流I,所以,荷电率不宜过高,才能确保过电压限制器的寿命荷电率的取值,各国都不相同,日本取值为0.45,美国取值为0.58,我国一般常规非有效接地系统中氧化锌过电压限制器的荷电率取0.45~0.6。《电气工程电气设计手册》中推荐氧化锌过电压限制器的荷电率不大于0.85,并要求保证使用寿命。残压的选择。残压是衡量过电压限制器保护水平的重要指标,由它构成氧化锌过电压限制器的保护特性。对于F-C回路来说,因不考虑雷电冲击过电压,这里指氧化锌过电压限制器的操作波残压。专业限流熔断器由入山假流瞬间贝较侧过电压数值,由两部分组成,其一是负载侧等值电容上的电压,其二是与截流值的大小成正比的电感上的电压,如果开断瞬间,没有发生截流,负载侧高频振荡电压幅值等于负载侧等值电容上的电压,即电源电压,过电压倍数为1。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号