虽然短路时间超过 5×时,电缆已经可以考虑对外的散热过程,但允许温度下降的影响对电缆的热稳定性能具有决定作用。 影响电缆热稳定性的因素,电缆的热稳定性主要受热阻、热容、温升时间常数、外部条件的影响。定制螺旋式熔断器热阻分为电缆热阻和外部媒介热阻,热阻是与材质及结构有关的固有特征,热阻越大,其散热性越差。热容与材料的热容系数有关,与材料的体积成正比,热容越大,温升所需的热量越多。电缆和外部媒质均有其温升时间常数,表征的是温度上升或下降至63.2%最终温度所需要的时间。电缆所处的外部条件,例如环境温度,通风状况,敷设方式等也都会对电缆的载流量和热稳定性产生影响。 山东螺旋式熔断器F-C 回路电缆热稳定截面选择条件的确定,高压熔断器与真空接触器对回路形成联合保护时,以图 3-6 所示的电动机回路熔断器选择及配合曲线为例,当短路电流大于熔断器与真空接触器保护交接点电流时,由熔断器提供保护;小于交接点电流时,由真空接触器按照综合保护装置保护曲线动作提供保护。
熔化过程带有爆炸性,熔化的金属和蒸汽立即深深地渗入到还处于冷态的石英砂中去,电弧很快熄灭,这一点正好和前述最大弧能条件相呼应。定制螺旋式熔断器当预期电流达到最大弧能的条件时,熔体元件在熔化前伴随着各种热传导,使周围填料温度已经提高。熔体元件可能在某一处或几处最薄弱的位置首先熔断,形成高温电弧,但周围填料温度较高,狭缝灭弧进行较慢,直到熔化的长度达到灭弧的必须的空隙要求,才最终熄弧。操作过电压的特点。高压限流熔断器在切断故障的过程中,在它的端子上将出现瞬态异常电压。它可以是峰值弧电压,也可能是在瞬态恢复电压时间内出现的电压。假定燃弧开始时,电流方向为正,要迫使电流下降,其变化率元必须为负。出现这种情况,必须是U1大于(e-iR。)。在燃弧开始时,这一条件尚不能满足,电流将继续上升一些,然后,电流才开始下降。为了尽快使电弧熄灭,山东螺旋式熔断器两端电压必须很大。F-C回路的过电压分析,增加熔体元件的槽口数有助于增加电弧电压U,因为这将形成几个电弧相串联,但需要注意这种措施也应受到一定限制,应避免熔断器两端产生太高的过电压。
电源侧在电弧燃烧过程中也提供一部分能源。实际经验表明,预期电流最大的情况下,往往并不对应燃弧消耗能量的最大值,然而,最大弧能的条件一般出现在预期电流达到(3~4)I。为开始限流的预期电流值)时。定制螺旋式熔断器灭弧的基本原理。熔断器电弧的燃烧与熄灭,取决于弧道区域的游离与去游离的过程,当去游离过程大于游离过程时,电弧将熄灭。高压熔断器熔断且产生电弧时,在弧柱区的高温作用下,介质的分子和原子产生强烈运动,它们之间不断发生碰撞,游离出电子和正离子,即热游离。在电弧稳定燃烧的情况下,弧柱的温度很高,电弧电压和弧柱的电场强度则较低,这种情况下,弧柱的游离作用主要是靠热游离来维持。在发生游离过程的同时,还进行着带电质点减少的去游离过程。山东螺旋式熔断器在稳定燃烧的电弧中,这两个过程处于动平衡状态。去游离的主要方式是复合和扩散。复合是异性带电质点的电荷彼此中和。显然,运动速度较低的带电质点更易于相互接近而复合。因此,设法降低电弧温度,是熄灭电弧的有效措施。
但对于以电缆供电为主的中压配电网,如大城市城区配电网、大中工矿企业配电网、中小型发电机电压直配电网、大容量火力发电厂的高压厂用电系统等,传统的接地方式还有一些不足之处,主要有以下几点:1)内过电压倍数较高,可达3.5~4倍过电压。间歇性电弧过电压及谐振过电压绝缘已经超过了避雷器允许承载能力,要求避开这两种过电压的发生和发展,从而需提高电网的整体绝缘水平。定制螺旋式熔断器对于具有大量高压电动机的工矿企业和火力发电厂,配合较难实现。2)单相接地故障下,在升高的稳态电压下运行时间在2h以上,不仅会导致绝缘早期老化,或在薄弱环节发生闪络,引起多点故障,酿成断路器异相开断,恶化开断条件。3)电缆为非自恢复绝缘,发生单相接地必是永久性故障,不允许继续行,必须迅速切断电源,避免扩大事故。所以主要由电缆线路组成的3~10kV电网,在电容电流超过10A(发电厂厂用电系统为7A)时,山东螺旋式熔断器宜采用中性点经电阻接地,单相接地故障立即跳闸的接地方式。由于立即跳闸而影响的供电连续性,则可从提高线路或设备的冗余度来解决,目前城网和大容量发电机组的高压厂用电系统已经按此设置。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号