在满足可靠性和下一段保护选择性的前提下,当在本段保护范围内发生短路时,F-C 回路应能在最短时间内切除故障,以防止熔断时间过长而加剧被保护电器的损坏。定制熔断器座对于熔断器与负荷侧设备的保护配合,即低压厂用变压器回路熔断器与低压侧负荷断路器之间的保护配合,一般低压侧断路器选择性保护所设置的短延时时间不超过0.6s,可用低压厂用变压器低压侧三相短路时对应的高压侧电流值乘以可靠系数(可取 1.07~1.1)和低压母线上负荷断路器中短延时保护设定时间最长的时间在熔断器时间一电流特性曲线图上确定一点来校验,该点应位于已选择好的熔断器的时间一电流特性曲线左侧。该配合除低压厂用变压器低压侧短路由熔断器开断的回路外,其他回路可不用特殊考虑校验。山东熔断器座F-C回路的继电保护,在F-C回路中,较大的故障电流由熔断器提供保护,较小的故障电流则由综合保护装置通过动作接触器加以补充,即F-C回路的保护由一次保护和二次保护共同完成。二次保护通常由综合保护装置来实现,综合保护装置是一种集多种保护功能于一体的保护装置,它几乎涵盖了所有电动机或低压变压器所需的保护。
电动机的启动电流或突然投入电流的时间一电流特性应在综合保护装置的最小动作特性以下,以免真空接触器误动作。对于变压器类负荷,当变压器低压侧或变压器内部发生故障由真空接触器动作时,熔断器宜能对变压器低压侧的短路故障进行保护,熔断器的最小开断电流宜低于预期短路电流。定制熔断器座对于厂用电系统中装有接地跳闸保护时,应注意中性点接地方式及中性点接地设备的选择,以避免出现在电流大于真空接触器额定开断电流时真空接触器跳合闸,具体的选择方式可参照 DL/T 5153《火力发电厂厂用电设计技术规程》。山东熔断器座在与上下级电源进行保护配合时,为了保证F-C回路保护具有选择性,电源树断路器综合保护装置的动作特性要在熔断器时间一电流特性曲线的右侧,负荷侧设备的保护装置的动作特性要在熔断器时间一电流特性曲线左侧。对于熔断器与电源侧保护的配合,发电厂内是F-C回路保护与高压厂用母线进线回路保护的配合,该进线回路的保护特性为综合保护装置提供的由多条保护曲线构成的曲线族,一般不用特殊考虑,可在调试阶段由调试单位确定。
随着触头间隙进一步加大,那时电压击穿将不再发生,电弧将最终熄灭。山东熔断器座最终第n次高频重燃电弧熄灭后,电动机上最大过电压为6.2.2 低压变压器的绝缘特性低压变压器根据其绝缘类型,应用较多的主要为低压油浸式变压器和低压干式变压器。低压干式变压器与低压油浸式变压器相比,具有布置维护方便和消防要求低等特点,因此已经成为发电厂厂用电系统设计的主要选择。低压干式变压器中以纸绝缘和环氧树脂两种类型应用最为广泛。下面主要介绍这两种低压干式变压器的一些绝缘特性。定制熔断器座低压干式变压器的绝缘等级、绝缘允许最高温度和绝缘允许温升。电容电阻接入回路之后,负载侧等值电容将起到变化,过电压幅值将得到抑制。此外等值电容的增大,过电压行波的陡度也将受到抑制。阻容过电压吸收器的电阻,将增加高频电弧重燃振荡回路的阻尼,改变高频振荡发生的条件,消除高频电弧重燃的机会,加速高频电弧重燃过电压的衰减。电缆的热稳定条件及影响因素,馈线动力电缆热稳定截面积的选择是3~10kV 系统供电电缆截面积选择的最主要因素。
在小的故障电流或过载情况下借助综合保护装置由真空接触器断开同路来提供保护,即F-C回路的保护由熔断器的一次保护和综保装置的二次保护配合共同完成。熔断器与真空接触器(通过综保装置的曲线)的保护配合基于熔断器的最小熔断时间一电流特性曲线和综保装置的时间一电流特性曲线。定制熔断器座在耐受能力上,真空接触器的额定开断电流值应大于综合保护装置的最小特性与熔断器的全开断特性的交点电流值,同时,真空接触器应能耐受熔断器的最大限流电流峰值,在热稳定方面应能耐受开断能量,这样,才能保证真空接触器能够分担F-C 回路中的部分保护功能。为了提高保护的可靠性,熔断器的最小开断电流应不超过最小交接点电流,且希望熔断器的最小开断电流应是尽量小。山东熔断器座最小开断电流以下的电流应由真空接触器断开,在电流低于熔断器最小开断电流时,熔断器无损伤的电弧耐受时间应长于联用的真空接触器脱扣时间。在为用电负荷提供保护时,对于电动机类负荷,电动机的堵转电流应在真空接触器的开断电流以内,熔断器不应开断。
3kV、10kV 电压等级的高压熔断器在电流特性上与 6kV 等级的差别不大,当高压厂用电系统额定电压为3kV或10kV时,山东熔断器座采用F-C回路供电的电动机和变压器的最大容量可暂按其额定电流与6kV系统初步确定的1250kW 电动机和 1600kVA 低压厂用变压器的额定电流相等原则来初步确定,再根据工程中采用的具体设备规范进行核算和调整。电流相等原则是指可采用 F-C 回路供电的 3、10kV 最大负荷的额定电流与可采用F-C 回路供电的6kV最大负荷的额定电流相等,例如6kV系统可采用F-C回路供电的最大电动机容量为1250kW,其额定电流为150.4A,则3kV系统可采用F-C 回路供电且额定电流为150.4A 的电动机容量为 625kW,10kV 系统为2083kW。定制熔断器座由于F-C回路无法实现差动保护功能,当工程中对 2000kW 或 2000kVA 及以上设备装设差动保护时,10kV 系统的供电负荷容量上限均小于2000kW或2000kVA。另外,目前大部分制造厂生产的10kV等级高压熔断器电流较小.其能供电的负荷无法达到表4-2中给出的容量,实际设计中建议予以考虑。高压熔断器与真空接触器的保护配合,F -C回路中的培断器作为保护电器,可在大的故障电流下通过断开回路提供保护。
干式变压器运行中产生的中性点接地方式及其对过电压保护的影响,损耗转换为热的形式,使绝缘的温度升高,在较高温度下绝缘会产生裂解,因此一般高温将使电老化加速。如果绝缘材料的质量或选择达不到绝缘等级的要求,就会使绝缘寿命缩短,即绝缘的机械、电气性能逐渐变坏,此过程即为热老化。干式变压器的损坏,一般多由热老化开始,但绝缘中温度分布是不同的,因此绝缘的热老化主要决定于最热点温度。定制熔断器座干式变压器运行中的工作温度不应超过绝缘材料允许温度,从而使绝缘具有经济合理的寿命。由于绝缘材料存在某些缺陷,以及浇注工艺不够完善造成的,在干式变压器树脂绝缘中总是存在气隙或气泡,从而导致绝缘中局部放电,它也是树脂绝缘干式变压器老化的主要因素。中性点接地方式及其对过电压保护的影响,工矿企业3~10kV供电系统有中性点不接地、经消弧线圈接地、经电阻接地等多种中性点接地方式,系统中性点接地方式的不同将直接影响到系统设备绝缘水平、山东熔断器座过电压水平、过电压保护元件的选择、继电保护方式系统的运行可靠性、通信干扰等各个方面3~10kV电网的中性点接地方式对过电压及其保护器的选择有较大影响。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号