氧化锌过电压限制器的选择,目前绝大多数的厂家普遍采用氧化锌过电压限制器作为F-C回路的过电压保护设备。定制MSD用熔断器氧化锌过电压限制器由氧化锌阀片叠加组成,具有十分优异的非线性伏一安特性。正常电压作用下,泄漏电流只有几十微安,实际上相当于一个对地绝缘的绝缘子,但在异常电压发生时,它的电阻又非常小,过电压行波过后,不存在工频续流,是当前使用较多的限制过电压设备。高压厂用电系统的中性点接地方式,不论是中性点不接地还是经高阻抗接地的接地方式,都属于中性点非有效接地系统。该系统过电压限制器的选择难度较大,限制器的运行条件比较苛刻。由于非有效接地系统允许系统带单相接地故障持续运行2h,因此非故障相的持续运行电压将升高√3倍,杭州MSD用熔断器过电压限制器的工频电压耐受能力应按此条件选择显然,工频电压耐受能力要求越高,则过电压限制器的额定电压的选择也相应越高,相反它的保护效果越差。氧化锌过电压限制器虽然可以限制操作过电压,保护电动机及低压变压器的主绝缘。
限制过电压的作用将由此电压开始。过电压限制器两端子间,施加工频参考电压时,流过限制器的泄漏电流称为工频参考电流I。显然,氧化锌过电压限制器工频参考电压的选择应大于额定电压值。荷电率的选择。氧化锌过电压限制器的持续运行电压与工频参考电压的比值称为荷电率。定制MSD用熔断器越接近工频参考电流I,所以,荷电率不宜过高,才能确保过电压限制器的寿命荷电率的取值,各国都不相同,日本取值为0.45,美国取值为0.58,我国一般常规非有效接地系统中氧化锌过电压限制器的荷电率取0.45~0.6。《电气工程电气设计手册》中推荐氧化锌过电压限制器的荷电率不大于0.85,并要求保证使用寿命。残压的选择。残压是衡量过电压限制器保护水平的重要指标,由它构成氧化锌过电压限制器的保护特性。对于F-C回路来说,因不考虑雷电冲击过电压,这里指氧化锌过电压限制器的操作波残压。定制MSD用熔断器由入山假流瞬间贝较侧过电压数值,由两部分组成,其一是负载侧等值电容上的电压,其二是与截流值的大小成正比的电感上的电压,如果开断瞬间,没有发生截流,负载侧高频振荡电压幅值等于负载侧等值电容上的电压,即电源电压,过电压倍数为1。
为方便进行设备绝缘试验,过电压保护装置前宜设置可拆连接片。杭州MSD用熔断器F-C回路过电压保护装置,就设计思想来说,分为两类,一类是电容器与电阻元件串联而成的阻容吸收器,另一类是以氧化锌阀片构成的过电压限制器。由于当前的3~10kV配电网的接地方式主要采取中性点不接地和低电阻接地两种型式,对于限制过电压的保护措施也主要针对这两种接地方式。阻容过电压吸收器是F-C回路的过电压保护设备的主要选择之一,适用于中性点有效接地的配电系统中。从原理上讲,阻容过电压吸收器是最理想的过电压保护设备,不仅可以限制过电压幅值、保护电动机主绝缘也能够抑制过电压陡度,保护电动机的匝间绝缘。但在设计中按不同回路的不同阻容特性选择阻容过电压吸收器在操作上难度较大,这是限制阻容过电压吸收器的一个重要原因。定制MSD用熔断器氧化锌过电压限制器也是F-C回路的过电压保护设备的主要选择之氧化锌过电压限制器由氧化锌阀片叠加组成,具有十分优异的非线性伏安特性。氧化锌过电压限制器可以限制操作过电压幅值,保护电动机及低压变压器的主绝缘,但其缺点是不能降低操作过电压行波的陡度,不能有效保护电动机绕组的匝间绝缘。
采用氧化锌过电压限制器作为F-C回路的过电压保护设备时可以考虑设置间隙。带串联间隙氧化锌过电压限制器解决了持续运行电压和荷电率过高而导致的阀片老化甚至爆炸的难题。带串联间隙氧化锌过电压限制器增加了氧化锌阀片的持续运行电压的裕度,保证了限制器的工作寿命,残压较低,保护性能较好。定制MSD用熔断器F-C回路的过电压与系统中性点接地方式密切相关,设计中应区别对待不同的中性点接地方式选择过电压保护设备配置方式。对中性点经低电阻接地的配电系统,过电压保护器的相地及相间保护电压分别按配电系统的相电压和线电压选择,宜选用星形接线形式的三相过电压保护器。对中性点不接地、经消弧线圈接地或经高电阻接地的配电系统,过电压保护器的相地及相间保护电压均按配电系统的线电压选择,当前应用比较广泛的是“三叉戟”接线形式的三相过电压保护器。所谓“三叉戟”接线形式,杭州MSD用熔断器是指过电压保护装置由4个参数相同的保护器构成,其中3个保护器分别与三相连接并形成星形接线,第4个保护器设置在星形接线的三相连接点与接地点之间,以保证各相之间以及相与地之间保护器配置的均衡。
在满足可靠性和下一段保护选择性的前提下,当在本段保护范围内发生短路时,F-C 回路应能在最短时间内切除故障,以防止熔断时间过长而加剧被保护电器的损坏。定制MSD用熔断器对于熔断器与负荷侧设备的保护配合,即低压厂用变压器回路熔断器与低压侧负荷断路器之间的保护配合,一般低压侧断路器选择性保护所设置的短延时时间不超过0.6s,可用低压厂用变压器低压侧三相短路时对应的高压侧电流值乘以可靠系数(可取 1.07~1.1)和低压母线上负荷断路器中短延时保护设定时间最长的时间在熔断器时间一电流特性曲线图上确定一点来校验,该点应位于已选择好的熔断器的时间一电流特性曲线左侧。该配合除低压厂用变压器低压侧短路由熔断器开断的回路外,其他回路可不用特殊考虑校验。杭州MSD用熔断器F-C回路的继电保护,在F-C回路中,较大的故障电流由熔断器提供保护,较小的故障电流则由综合保护装置通过动作接触器加以补充,即F-C回路的保护由一次保护和二次保护共同完成。二次保护通常由综合保护装置来实现,综合保护装置是一种集多种保护功能于一体的保护装置,它几乎涵盖了所有电动机或低压变压器所需的保护。
干式变压器运行中产生的中性点接地方式及其对过电压保护的影响,损耗转换为热的形式,使绝缘的温度升高,在较高温度下绝缘会产生裂解,因此一般高温将使电老化加速。如果绝缘材料的质量或选择达不到绝缘等级的要求,就会使绝缘寿命缩短,即绝缘的机械、电气性能逐渐变坏,此过程即为热老化。干式变压器的损坏,一般多由热老化开始,但绝缘中温度分布是不同的,因此绝缘的热老化主要决定于最热点温度。定制MSD用熔断器干式变压器运行中的工作温度不应超过绝缘材料允许温度,从而使绝缘具有经济合理的寿命。由于绝缘材料存在某些缺陷,以及浇注工艺不够完善造成的,在干式变压器树脂绝缘中总是存在气隙或气泡,从而导致绝缘中局部放电,它也是树脂绝缘干式变压器老化的主要因素。中性点接地方式及其对过电压保护的影响,工矿企业3~10kV供电系统有中性点不接地、经消弧线圈接地、经电阻接地等多种中性点接地方式,系统中性点接地方式的不同将直接影响到系统设备绝缘水平、杭州MSD用熔断器过电压水平、过电压保护元件的选择、继电保护方式系统的运行可靠性、通信干扰等各个方面3~10kV电网的中性点接地方式对过电压及其保护器的选择有较大影响。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号