阻容过电压吸收器的选择,阻容过电压吸收器由电阻与电容器等元件串联组成,是通过改变开断回路的阻抗参数来吸收过电压的能量,从理论上来说,西宁低压熔断器这是最理想的过电压保护措施。阻容吸收器可联接在FC回路断口之外的负载侧,阻容过电,研究人员曾进行过阻容过电压吸收器的配合试验,吸收器的参数为R=2502,Cb=0.33xF。开断空载电动机共进行24相次,截流值由不加吸收器前的21A降到10.5A,过电压倍数不超过2.33倍相电压,开断起动状态电动机也进行了24相次,测试表明,吸收器投入后高频振荡持续时间缩短,最大过电压为4倍相电压,但出现的几率由不加吸收器前的76.6%降到3.23%。可见阻容过电压吸收器对开断感应电动机的过电压具有较好的限制保护作用。定制低压熔断器针对中性点不接地系统,实践表明,用于F-C回路的阻容过电压吸收器可以采用与“三叉戟”式避雷器相同的接线方式,可以取相地相间电容约为0.1~0.51F,相地相间电阻值约为100~5002。但是阻容吸收器的投入,也使6kV厂用电系统相对地电容值增加。以往由于国内发电机组的高压厂用电系统在接地电容电流满足要求的条件。
3~10kV电网的中性点接地方式包括传统的不接地或经消弧线圈接地,以及电阻接地等多种接地方式。要确定电网的接地方式,必须综合考虑供电安全可靠性和连续性、配电网和线路结构、过电压保护和绝缘配合、继电保护构成和跳闸方式、设备安全和人身安等诸多因素。定制低压熔断器下面简要介绍几种常用的接地方式及其对过电压的影响。3~10kV电网的中性点接地方式可以简单的归纳为单相故障时不(延时)跳闸和(立即)跳闸两种类型。单相接地不跳闸的中性点接地方式包括不接地、经消弧线圈接地和高电阻接地。过去国内3~10kV电网大多采用这些接地方式,但随着我国城乡电网电缆线路逐渐代替架空线和火力发电厂机组容量增大引起的电缆长度大幅增加,我国的3~10kV电网的中性点采用不接地或消弧线圈接地方式的做法已经不能满足电力工业建设发展和城市电网扩充改造的需要。实践证明,单相接地故障不立即跳闸的接地方式,西宁低压熔断器有利于提高供电连续性特别适合于故障几率高、绝缘可自行恢复的以架空线路为主的配电网,如农村和中小城市供电网。
采用氧化锌过电压限制器作为F-C回路的过电压保护设备时可以考虑设置间隙。带串联间隙氧化锌过电压限制器解决了持续运行电压和荷电率过高而导致的阀片老化甚至爆炸的难题。带串联间隙氧化锌过电压限制器增加了氧化锌阀片的持续运行电压的裕度,保证了限制器的工作寿命,残压较低,保护性能较好。定制低压熔断器F-C回路的过电压与系统中性点接地方式密切相关,设计中应区别对待不同的中性点接地方式选择过电压保护设备配置方式。对中性点经低电阻接地的配电系统,过电压保护器的相地及相间保护电压分别按配电系统的相电压和线电压选择,宜选用星形接线形式的三相过电压保护器。对中性点不接地、经消弧线圈接地或经高电阻接地的配电系统,过电压保护器的相地及相间保护电压均按配电系统的线电压选择,当前应用比较广泛的是“三叉戟”接线形式的三相过电压保护器。所谓“三叉戟”接线形式,西宁低压熔断器是指过电压保护装置由4个参数相同的保护器构成,其中3个保护器分别与三相连接并形成星形接线,第4个保护器设置在星形接线的三相连接点与接地点之间,以保证各相之间以及相与地之间保护器配置的均衡。
关于熔断器的允许操作过电压的国家标准,是最大允许值。实际产品往往小于上述标准。西宁低压熔断器真空接触器灭弧特性及操作过电压分析,真空接触器的结构特点和灭弧特性。真空接触器与真空断路器非常相似,两者就其结构而言基本相同,合闸与分闸时间也大致相同真空接触器与真空断路器比较,灭弧室方面存在一些小的差别,其是断路器灭弧室内设屏蔽罩,接触器则可以取消屏蔽罩;其二是断路器触头为圆柱体,端面上径向开有斜槽,灭弧过程形成旋转电弧,接触器的触头虽然也是圆柱体,但端面上一般没有径向斜槽;其三是触头开距不同,断路器触头开距稍大真空断路器与真空接触器分合闸时间虽然大致相同,但它们的触头间开距不同,接触器略小,所以接触器的分合闸速度实际上低于断路器。定制低压熔断器但就分闸的绝对速度来分析,实际上速率并不低。因此真空接触器虽然在灭弧室的结构上与断路器比较有微小差异,但它们的灭弧原理是相同的,这一点对分析操作过电压的特性十分重要。F-C回路的过电压分析,试验在一系列6kV中、小容量电动机群展开,证明切断电动机起动电流的过程中,发生重燃的几率较高,而且触头打开与电流自然过零的时间间隔小于1ms。
虽然短路时间超过 5×时,电缆已经可以考虑对外的散热过程,但允许温度下降的影响对电缆的热稳定性能具有决定作用。 影响电缆热稳定性的因素,电缆的热稳定性主要受热阻、热容、温升时间常数、外部条件的影响。定制低压熔断器热阻分为电缆热阻和外部媒介热阻,热阻是与材质及结构有关的固有特征,热阻越大,其散热性越差。热容与材料的热容系数有关,与材料的体积成正比,热容越大,温升所需的热量越多。电缆和外部媒质均有其温升时间常数,表征的是温度上升或下降至63.2%最终温度所需要的时间。电缆所处的外部条件,例如环境温度,通风状况,敷设方式等也都会对电缆的载流量和热稳定性产生影响。 西宁低压熔断器F-C 回路电缆热稳定截面选择条件的确定,高压熔断器与真空接触器对回路形成联合保护时,以图 3-6 所示的电动机回路熔断器选择及配合曲线为例,当短路电流大于熔断器与真空接触器保护交接点电流时,由熔断器提供保护;小于交接点电流时,由真空接触器按照综合保护装置保护曲线动作提供保护。
热线:029-68590633
Q Q:604296408(徐经理)
邮箱:xasurong@163.com
地点:陕西省西安市高新区丈八五路2号